Connect with us


Despite Concerns, Space Junk Continues to Clutter Earth Orbit




a cloud of many particles surrounds Earth

Earth orbit is getting cluttered. (Credit: NASA)

Humans have a tendency to litter wherever we go. Whether it’s the local park, a music festival, or Mt. Everest, we’re just not good at cleaning up after ourselves. And space is no exception.

Space is pretty big. Infinite, in fact. But the same can’t be said of low-Earth orbit (LEO) and, in particular, the most popular orbital lanes used by Earth-sensing and communications satellites. We’re launching more objects skyward every year and not, in many cases, cleaning up when we’re done with them. So the space around us is starting to fill up. 

Messy Space

a tiny metal sphere inside a large impact crater

Even tiny objects can cause serious damage at orbital speeds. (Credit: ESA)

Even when Sputnik launched in 1957, it wasn’t alone. The shiny ball was accompanied by its core stage and payload fairing, both of which tumbled around Earth in nearby orbits. Much of the hardware we launch is similarly partnered, meaning each launch can be responsible for multiple pieces of orbital debris. Much of this “debris” is, of course, composed of hard-working satellites performing valuable jobs. But the majority is derelict, either drifting past its useful lifetime or genuine trash like the spent rocket stages. And “drifting” is a relative term here: Some objects in orbit are moving at up to 17,000 miles per hour.

As human technology needs have become greater, we’ve also become more reliant on growing numbers of satellites. Newly proposed “constellations” of dozens or even thousands of satellites could greatly expand the number of artificial companions in orbit around us —communications networks more or less require them in order to deliver global coverage. The well-established Iridium satellite phone network uses 66 satellites (plus a few spares if something goes wrong — more on that below). SpaceX recently received FCC approval to launch roughly 12,000 satellites for their planned space-based internet.

Many of the new generation of satellites could by tiny, but numerous. CubeSats are tiny satellites much touted as gateways for even small research groups or companies to gain access to space science, thanks to the low cost of launch and development. But that very ease of access means they’re flooding the skies in greater numbers every year.

The more cluttered space becomes, the greater risk there is for a collision. And this is no hypothetical. In fact, a large fraction of the debris we know about in space is the result of just two past collisions. The first, in 2007, was China’s intentional “destruction” of a weather satellite as a test of their ability to destroy objects in space. The problem is that while they very successfully demolished the satellite (one China also owned, by the way), what they also did was turn it from one orbiting object into a few thousand, many of which are still circling us today. These drifting bits of debris are a lot harder to track than one derelict weather satellite. This alone angered other space agencies, not to even mention the thorny issue of militarizing space.

The second noteworthy event happened in 2009, when an active Iridium satellite crashed into a deactivated Russian communications satellite. The resulting accident created a debris cloud similar to the one from the intentional destruction of the Chinese satellite two years earlier, but much more frightening. After all, you can at least try to tell the Chinese government to knock it off, but you can’t stop Newton’s laws of motion once the satellites are already up there.

Orbital Dodgeball

So, to recap: There are working spacecraft, derelict satellites, discarded remnants of past launches and repair jobs and a few thousand pieces of barely trackable former satellites whirling around the Earth at velocities high enough to make even a grain of sand a killer. There are also a few million pieces smaller than golf ball-sized that we can’t track, but which could still punch a hole in a lot of delicate equipment. Some burn up in the atmosphere, but most will be up there for the foreseeable future.

So what are we doing about all this dangerous orbiting debris?

We’re monitoring the situation, to start. NASA and other agencies are doing their best to keep track of where this orbital debris is, down to the smallest pieces they can track. But it’s an inexact science, and smaller objects, or those tumbling haphazardly, can only be tracked approximately. Objects in LEO pass within a few kilometers of each other every single day. When they’re on tighter trajectories, the satellite operators can usually adjust their course, but this relies on at least one of the objects still being under human control. If both pieces are out of fuel or otherwise not maneuverable, there’s little operators can do.

For astronauts in the International Space Station, protocol is for them to hunker down in the Soyuz capsule if a collision or near-miss is expected, much as they do for any dangerous situation. (A recent hole discovered in said capsule — which may have come from an orbital collision — reveals even that strategy has its dangers, though.)

Cleaning Up Our Act

a cubic satellite in space

RemoveDEBRIS is a satellite designed to test various ways of cleaning up orbital clutter. (Credit: NASA)

Space agencies and private companies are under more and more pressure to clean up after themselves. This means making sure to de-orbit their satellites and accompanying space trash, either by driving them low to burn up in Earth’s atmosphere or flying away to higher, less-crowded orbits. But there aren’t any space police to make people follow the rules, meaning enforcement of these policies is no guarantee.

How to De-Clutter Space

Instead of preventing new debris, a group of researchers at the University of Surrey are trying to deal with the trash that already exists. This past September, they tested out a satellite called RemoveDEBRIS. The small craft threw out a net in orbit, grabbed a hunk of test trash, and set it on a new course to burn up as harmless wreckage in Earth’s atmosphere. (Most plans end with burning up debris in Earth’s atmosphere. While it sounds dangerous, the odds of any piece making it through to damage Earth’s surface are staggeringly low.) It will also test harpooning objects to collect them, and using cameras to navigate and report on nearby debris.

To avoid being called a hypocrite, at the end of its life RemoveDEBRIS will deploy a sail to drag itself into Earth’s atmosphere and burn up.

Scientists at Tohoku University in Japan are working on a different solution. This one involves ion-beam shepherding, a sort of anti-tractor beam concept that hasn’t been tested in real life yet, but is plausible with current technology. The idea would let a satellite push orbiting debris into Earth’s atmosphere, a more renewable plan than throwing nets at trash.

Whatever the solution, humans should start figuring it out quickly, because we don’t seem likely to stop launching hardware skyward anytime soon.


Source link

قالب وردپرس


Yukon and Northern BC First Nations tackle climate change using Indigenous knowledge and science




YUKON, June 18, 2021 /CNW/ – The Government of Canada is working together in partnership with Indigenous and Northern communities in finding solutions to adapt to the impacts of climate change in the North.

Today, Minister of Northern Affairs, Daniel Vandal, along with Parliamentary Secretary to the Minister of Economic Development and Official Languages (Canadian Northern Economic Development Agency), Larry Bagnell, highlighted progress on three unique, Indigenous-led projects that are helping communities in Yukon and Northern British Columbia adapt to the challenges posed by climate change.

The Minister and Parliamentary Secretary met virtually with Carcross/Tagish First Nation (C/TFN) to learn about their community-led climate change monitoring program. C/TFN has partnered with Tsay Keh Dene Nation (TKDN) and Chu Cho Environmental of Prince George, British Columbia, to build a community-led monitoring project that examines environmental data and Indigenous knowledge to create a holistic picture of how the climate is changing across C/TFN and TKDN traditional territories. The project combines tracking of current and historical climate trends with knowledge shared by Elders while also providing opportunities for youth mentorship and climate change awareness.

The Taku River Tlingit First Nation (TRTFN) is also leading a unique project to assess the impacts of climate change within their traditional territory. Climate change is causing many of the culturally significant ice patches to melt, exposing organic artifacts to oxygen and leading to rapid deterioration. The TRTFN ice patch mapping project will involve performing archaeological assessments to prevent the degradation of artifacts. Research will be guided by traditional knowledge, Elders and oral histories, when available, and heavily involve community, Elders, youth and Knowledge Keepers.

The Pelly Crossing Selkirk Development Corporation is leading the Selkirk Wind Resource Assessment project through the installation of a Sonic Detection and Ranging (SODAR) system. The initiative includes a feasibility study leading up to the construction of a renewable energy facility, including wind, solar and battery energy storage. Expanding clean energy within the region will have direct benefits for communities, including reduced reliance on diesel, job creation and revenue generation for Selkirk First Nation. 

These projects are delivering important environmental, social and economic benefits that lead to healthier, more sustainable and resilient communities across Yukon and Northern British Columbia. They also build community clean energy capacity and help to avoid the impacts of climate change.

Continue Reading


Atlantic Provinces Ready For Aquaculture Growth




Aquaculture is an important economic driver for rural, coastal and Indigenous communities, and Atlantic Canada is well positioned to increase aquaculture production as global demand for sustainably sourced seafood grows.

That is why the ministers responsible for aquaculture in the Atlantic provinces have agreed to the ongoing development and management of their industries based on common principles. A new memorandum of understanding has been signed by the four ministers, which extends the previous agreement signed in 2008.

“In a time when food security is especially important, it is good to see our aquaculture industry has grown steadily and is poised for continued growth in 2021 based on environmentally responsible, science-based policies and practices,” said Keith Colwell, Minister of Fisheries and Aquaculture for Nova Scotia. “Our Atlantic partnership continues to help the industry grow sustainably.”

Cooperation between the provinces and the aquaculture industry has led to improvements in pest management, environmentally sustainable aquaculture methods, aquatic animal health and policies to support the shared use of marine and freshwater resources. It also aims to align regulation and policy between the provinces to make the regulatory requirements easier to understand by industry and the public.

Each province has a comprehensive and robust legislative and regulatory framework to ensure environmental sustainability, economic prosperity and public accountability. The provinces update their legislation and regulations regularly. Nova Scotia revamped its regulatory framework in 2015; New Brunswick received Royal Assent for a new Aquaculture Act in 2019 and is working on the supporting regulations; Newfoundland and Labrador completely revised its aquaculture policy in 2019; and Prince Edward Island has recently drafted a new Aquaculture Act.

The ministers have agreed to continue to use science-based evidence for management decisions, thereby increasing public and investor confidence in the Atlantic Canadian aquaculture industry.

Continue Reading


COMING SOON: A Healthy Environment and a Healthy Economy 2.0




We all want the same thing: a clean and responsible energy future for our children and future generations while continuing to enjoy a high standard of living.

On December 11, 2020, the Prime Minister announced a new climate plan which he claimed will help achieve Canada’s economic and environmental goals.

The proposed plan by Environment and Climate Change Canada (ECCC) entitled “A Healthy Environment and a Healthy Economy” will have an initial investment of $15 billion of taxpayer’s money. It is built on 5 pillars of action:

  1) Making the Places Canadians Live and Gather More Affordable by Cutting Energy Waste

2) Making Clean, Affordable Transportation and Power Available in Every Community

3) Continuing to Ensure Pollution isn’t Free and Households Get More Money Back

4) Building Canada’s Clean Industrial Advantage

5) Embracing the Power of Nature to Support Healthier Families and More Resilient Communities  

In my paper, “A Healthy Environment and a Healthy Economy 2.0” I will objectively critique each pillar in the government’s new climate plan and provide alternative solutions to the same issues.

  This is an alternative plan that supports workers, protects lower income earners and creates economic growth while respecting the environment and focusing on the dignity of work.

  This plan abandons virtue-signaling projects and relies on Canadian ingenuity to build our economy and restore Canada’s role of responsible leadership in the world.

Continue Reading