Connect with us

Ecology

Seen from space: the volcanic eruption that likely triggered Indonesia’s devastating tsunami

Published

on

[ad_1]

Krakatau volcanic eruption

A volcanic cloud from the eruption of Anak Krakatau in Indonesia on December 22, 2018 is seen in this animation of satellite images acquired by the Himawari-8 satellite. Two distinct volcanic pulses are evident. (After clicking on the screenshot above, click “play” in the upper left corner of the page that launches. If the animation does not run, refresh the page. Source: RAMMB/CIRA SLIDER)

In Indonesia, they call it “Anak Krakatoa, meaning “child of Krakatoa.”

It’s a volcano that rose from the sea in the 1920s decades after one of the most deadly volcanic cataclysms in recorded history killed tens of thousands of people and all but obliterated the island of Krakatoa, east of Java.

Now, Anak Krakatau has itself brought great misery to Indonesia, with an eruption that apparently triggered an underwater landslide, which in turn sent a tsunami racing toward the western tip of the island of Java. A wall of water roared ashore, catching residents and vacationers completely unawares. As I’m writing this on Christmas Eve, more than 370 people have perished, and more than a hundred still are missing.

When Anak Krakatau erupted on December 22, Japan’s Himawari-8 weather satellite was watching from geostationary orbit, 22,239 miles overhead. Click on the screenshot above to watch what the satellite saw.

The animation consists of “GeoColor” imagery acquired in different parts of the electromagnetic spectrum at 10-minute intervals starting at 11:00 UTC. A first pulse of ash is visible at about 13:40, and then a second one at 15:20. As the animation continues, dawn breaks and a plume of ash and steam can still be seen amidst a cloudy atmosphere.

Here’s what the eruption looked like in the infrared part of the electromagnetic spectrum:

Volcanic eruption of Anak Krakatau as seen in the infrared by Himawari-8

An infrared view acquired by the Himawari-8 satellite shows the volcanic eruption of Anak Krakatau. (Source: Cooperative Institute for Meteorological Satellite Studies)

The infrared data in this animation reveal cloud-top temperatures of  -80º Celsius or colder. This suggests the plume billowed up to nearly 10 miles high in the atmosphere, according to the Cooperative Institute for Meteorological Satellite Studies.

As the ash soared high, the volcano’s south flank collapsed. For a visual explanation of how that probably led to the tsunami, check out this video from Geoscience Australia:

It wasn’t as if Anak Krakatau had been dormant prior to the eruption. For months, the volcano had been spewing superheated ash into the sky and lava into the Sunda Strait between Java and Sumatra, Indonesia’s two largest islands. In July, the volcano even threw truck-sized lava bombs skyward.

But the tsunami crashed ashore without warning. News reports say Indonesia’s tsunami warning system had not been operating properly.

But even if the system had been operable, it might not have made a difference. Speaking of the tsunami in an interview on National Public Radio, University of Alberta geoscientist Stephen Johnston noted that were “no sensors in the way that would have detected it.” And even if sensors had been present, the tsunami was triggered so close to shore that “there would have been no chance for any significant warning to have got to these people.”

27th May 1883: Clouds pouring from the volcano on Krakatoa (aka Krakatau or Rakata) in south western Indonesia during the early stages of the eruption which eventually destroyed most of the island. Royal Society Report on Krakatoa Eruption - pub. 1888 Lithograph - Parker & Coward (Photo by Hulton Archive/Getty Images)

Clouds pour from the Krakatoa volcano during May of 1883, as depicted in a lithograph originally published in 1888 by a Royal Society Report on the eruption. This was an early stage in an event that led to one of the most devastating volcanic cataclysms on record. (Source: Wikimedia Commons)

Death and destruction from volcanic eruptions are nothing new in this part of the world. In fact, Krakatoa — Anak Krakatau’s ‘parent’ — exploded far more massively in August of 1883. The explosion, following more than a month of activity, rocketed billions of tons of pumice up to 50 miles into the sky; ten days later, dust fell 3,000 miles away.

The explosion also caused the entire 2,600-foot-high volcanic cone to collapse, obliterating most of the island and triggering tsunami waves that towered up to 130 feet high. An estimated 36,000 people perished, swallowed up by the mountains of onrushing water.

A photograph taken in 1928 shows Anak Krakatau, or "Child of Krakatoa," which rose up after Krakatoa island was destroyed following the massive eruption in 1883. (Source: Tropenmuseum, via Wikimedia Commons)

Anak Krakatau, or “Child of Krakatoa,” spews ash during the 1920s. The volcano rose up after Krakatoa island was destroyed following the massive eruption in 1883. (Source: Tropenmuseum, via Wikimedia Commons)

It took more than 40 years for Anak Krakatau to rise up from the undersea remains of Krakatoa. You can see it erupting in 1928 in the photograph above.

[ad_2]

Source link

قالب وردپرس

Ecology

Yukon and Northern BC First Nations tackle climate change using Indigenous knowledge and science

Published

on

By

YUKON, June 18, 2021 /CNW/ – The Government of Canada is working together in partnership with Indigenous and Northern communities in finding solutions to adapt to the impacts of climate change in the North.

Today, Minister of Northern Affairs, Daniel Vandal, along with Parliamentary Secretary to the Minister of Economic Development and Official Languages (Canadian Northern Economic Development Agency), Larry Bagnell, highlighted progress on three unique, Indigenous-led projects that are helping communities in Yukon and Northern British Columbia adapt to the challenges posed by climate change.

The Minister and Parliamentary Secretary met virtually with Carcross/Tagish First Nation (C/TFN) to learn about their community-led climate change monitoring program. C/TFN has partnered with Tsay Keh Dene Nation (TKDN) and Chu Cho Environmental of Prince George, British Columbia, to build a community-led monitoring project that examines environmental data and Indigenous knowledge to create a holistic picture of how the climate is changing across C/TFN and TKDN traditional territories. The project combines tracking of current and historical climate trends with knowledge shared by Elders while also providing opportunities for youth mentorship and climate change awareness.

The Taku River Tlingit First Nation (TRTFN) is also leading a unique project to assess the impacts of climate change within their traditional territory. Climate change is causing many of the culturally significant ice patches to melt, exposing organic artifacts to oxygen and leading to rapid deterioration. The TRTFN ice patch mapping project will involve performing archaeological assessments to prevent the degradation of artifacts. Research will be guided by traditional knowledge, Elders and oral histories, when available, and heavily involve community, Elders, youth and Knowledge Keepers.

The Pelly Crossing Selkirk Development Corporation is leading the Selkirk Wind Resource Assessment project through the installation of a Sonic Detection and Ranging (SODAR) system. The initiative includes a feasibility study leading up to the construction of a renewable energy facility, including wind, solar and battery energy storage. Expanding clean energy within the region will have direct benefits for communities, including reduced reliance on diesel, job creation and revenue generation for Selkirk First Nation. 

These projects are delivering important environmental, social and economic benefits that lead to healthier, more sustainable and resilient communities across Yukon and Northern British Columbia. They also build community clean energy capacity and help to avoid the impacts of climate change.

Continue Reading

Ecology

Atlantic Provinces Ready For Aquaculture Growth

Published

on

By

Aquaculture is an important economic driver for rural, coastal and Indigenous communities, and Atlantic Canada is well positioned to increase aquaculture production as global demand for sustainably sourced seafood grows.

That is why the ministers responsible for aquaculture in the Atlantic provinces have agreed to the ongoing development and management of their industries based on common principles. A new memorandum of understanding has been signed by the four ministers, which extends the previous agreement signed in 2008.

“In a time when food security is especially important, it is good to see our aquaculture industry has grown steadily and is poised for continued growth in 2021 based on environmentally responsible, science-based policies and practices,” said Keith Colwell, Minister of Fisheries and Aquaculture for Nova Scotia. “Our Atlantic partnership continues to help the industry grow sustainably.”

Cooperation between the provinces and the aquaculture industry has led to improvements in pest management, environmentally sustainable aquaculture methods, aquatic animal health and policies to support the shared use of marine and freshwater resources. It also aims to align regulation and policy between the provinces to make the regulatory requirements easier to understand by industry and the public.

Each province has a comprehensive and robust legislative and regulatory framework to ensure environmental sustainability, economic prosperity and public accountability. The provinces update their legislation and regulations regularly. Nova Scotia revamped its regulatory framework in 2015; New Brunswick received Royal Assent for a new Aquaculture Act in 2019 and is working on the supporting regulations; Newfoundland and Labrador completely revised its aquaculture policy in 2019; and Prince Edward Island has recently drafted a new Aquaculture Act.

The ministers have agreed to continue to use science-based evidence for management decisions, thereby increasing public and investor confidence in the Atlantic Canadian aquaculture industry.

Continue Reading

Ecology

COMING SOON: A Healthy Environment and a Healthy Economy 2.0

Published

on

By

We all want the same thing: a clean and responsible energy future for our children and future generations while continuing to enjoy a high standard of living.

On December 11, 2020, the Prime Minister announced a new climate plan which he claimed will help achieve Canada’s economic and environmental goals.

The proposed plan by Environment and Climate Change Canada (ECCC) entitled “A Healthy Environment and a Healthy Economy” will have an initial investment of $15 billion of taxpayer’s money. It is built on 5 pillars of action:

  1) Making the Places Canadians Live and Gather More Affordable by Cutting Energy Waste

2) Making Clean, Affordable Transportation and Power Available in Every Community

3) Continuing to Ensure Pollution isn’t Free and Households Get More Money Back

4) Building Canada’s Clean Industrial Advantage

5) Embracing the Power of Nature to Support Healthier Families and More Resilient Communities  

In my paper, “A Healthy Environment and a Healthy Economy 2.0” I will objectively critique each pillar in the government’s new climate plan and provide alternative solutions to the same issues.

  This is an alternative plan that supports workers, protects lower income earners and creates economic growth while respecting the environment and focusing on the dignity of work.

  This plan abandons virtue-signaling projects and relies on Canadian ingenuity to build our economy and restore Canada’s role of responsible leadership in the world.

Continue Reading

Trending