Connect with us

Ecology

Figuring Out How Plants Grow in Space is Vital for Future Missions

Editor

Published

on

[ad_1]

This is an Arabidopsis thaliana, the plant species used in this study. (Credit: Eric Belfield)

This is Arabidopsis thaliana, the plant species grown aboard the International Space Station and analyzed in this study. This work could support future efforts to grow food in space. (Credit: Eric Belfield)

Space Plants

Will future astronauts be able to snack on fresh space-grown produce? New research is advancing the study of plant growth in space, which may one day support humans living and growing their own food in space or on the surface of Mars.

Researchers at the University of Florida Space Plants Lab are analyzing tissue taken from plants that have spent their entire lives growing in the microgravity environment aboard the International Space Station. It’s revealing that plants can indeed grow off-world, but they face unique challenges that researchers are only now beginning to comprehend.

The team looked at which genes were being expressed in the plants at any given time by looking at what’s called the transcriptome — the RNA sequences, or genetic messengers, that are being made — and compared that to samples grown on Earth.

As corresponding author and principal investigator Anna-Lisa Paul said in an email, gene expression “provides an excellent readout of how the plant is responding to its environment. In a way, you can think of it as seeing the list of “tools” the plant is using to cope with the novel situation of spaceflight.”

Studying Plant “Brains”

In this study, published in the journal Applications in Plant Sciences, the team analyzed samples from the plant Arabidopsis thaliana (rockcress), a small flowering plant related to cabbage and mustard. They specifically studied the root apex, or tip.

“The very root tip acts a bit like a “brain” to help sense changes in the environment, and then send the signaling molecules to the right places to initiate changes that help get root growth back on track,” Paul said. “So, what if you have no gravity to help with that signal transduction? The root tip still acts as the central processing node in the root, and we can get insight into how the plant navigates in an environment without gravity to guide it by looking at the root tip transcriptome.”

There is still much to learn about plant growth in microgravity, but this study has helped identify some differences between plants grown in space and on Earth.

“We see many genes differentially expressed in spaceflight that are associated with cell wall remodeling and cell expansion. Plants also respond as if they are being challenged by certain stresses, even though the spaceflight environment does not really look as if it should be ‘stressful,’” Paul said. “Taken all together, it tells us that plants know they are in a strange environment, and although they can survive there, they need to work hard.”

Produce on Mars

This work and the study of plant growth in space will be important for future crewed missions to the space station, the moon and one day Mars. “We need to know how plants tick in a zero gravity environment, or any altered gravity environment, before we can be confident they will thrive on a mission to Mars,” Paul said.

While this study only explores how plant growth is affected by the space station’s microgravity, it also shows how plants might respond to altered gravity in general. Additionally, Paul suggests, understanding how to grow plants in the controlled, resource-limited environment on the space station could inform future efforts to grow plants in a contained environment on an alien planet.

Astronauts who travel to space currently do not have access to truly fresh produce. But, they are only aboard the space station for a relatively short period of time, get resupplied regularly and space agencies make a concerted effort to provide enjoyable food. Because of this, astronauts today have access to adequate meals and face no risk of running out of food. But this might change for astronauts aboard future crewed missions to the moon or on deep-space missions to Mars. Especially on Mars, the ability to grow food will be critical for astronauts who, otherwise, would have a finite food supply. The ability to grow produce on Mars would ensure sustainability for a mission and a healthy diet for crew members.

[ad_2]

Source link

قالب وردپرس

Ecology

Today’s letters: ‘Visionary’ plans don’t always work in Ottawa

Editor

Published

on

By

The opinion piece written by Tobi Nussbaum, CEO of the NCC, declares that a “bold, visionary transit plan” would showcase the capital.

As a long-term resident of Ottawa, I’ve had it with visionary plans. In the 1950s, the streetcars serving Ottawa so well were sent to the scrapyards. In the early ’60s, Queensway construction bulldozed established neighbourhoods and ripped the city apart. Later in the decade, the downtown railway station, which could have formed the hub of a commuter network, was relocated to the suburbs. These actions, in the name of “progress,” were undertaken with the “vision” to make Ottawa a car-reliant city.

Now we have an LRT, built just in time for most people to realize that they do not have to go downtown as they can work from home.

Current thinking is pushing a new “link” between Ottawa and Gatineau, with yet more expensive and disruptive infrastructure projects being touted, including a tramway or another tunnel under the downtown core.

Continue Reading

Ecology

That was then: Biggest earthquake since 1653 rocked Ottawa in 1925

Editor

Published

on

By

A regular weekly look-back at some offbeat or interesting stories that have appeared in the Ottawa Citizen over its 175-year history. Today: The big one hits.

The Ottawa Senators were playing a Saturday night game against the Montreal Canadiens at the Auditorium, the score tied 0-0 halfway through the second period. Sens’ rookie Ed Gorman and the Habs’ Billy Boucher had just served penalties for a dustup when the building began to make “ominous creaking sounds.” A window crashed to the ground.

Nearby, at Lisgar Collegiate, all eyes were on teenager Roxie Carrier, in the role of Donna Cyrilla in the musical comedy El Bandido. She had the stage to herself and was singing “Sometime” when the building rocked, the spotlight went out, and someone in the audience yelled “Fire!”

At a home on Carey Avenue, one woman’s normally relaxed cat suddenly arched its back, rushed around the room two or three times, spitting angrily, and climbed up the front-window curtains.

Continue Reading

Ecology

Ottawa delays small nuclear reactor plan as critics decry push for new reactors

Editor

Published

on

By

TORONTO — Canadians will have to wait a little while longer to see the federal government’s plan for the development of small nuclear reactors, seen by proponents as critical to the country’s fight against global warming.

Speaking at the opening of a two-day virtual international conference on Wednesday, the parliamentary secretary to the minister of natural resources said the plan will lay out key actions regarding the reactors. Its launch, Paul Lefebvre said, would come in the next few weeks.

“We’re still putting the finishing touches on it,” Lefebvre said. “The action plan is too important to be rushed.”

Small modular reactors — SMRs — are smaller in size and energy output than traditional nuclear power units, and more flexible in their deployment. While conventional reactors produce around 800 megawatts of power, SMRs can deliver up to 300 megawatts.

Proponents consider them ideal as both part of the regular electricity grid as well as for use in remote locations, including industrial sites and isolated northern communities. They could also play a role in the production of hydrogen and local heating.

“SMRs will allow us to take a bold step of meeting our goal of net-zero (emissions) by 2050 while creating good, middle class jobs and strengthening our competitive advantage,” said Lefebvre.

Natural Resources Minister Seamus O’Regan had been scheduled to speak at the conference but did not due to a family emergency.

Industry critics were quick to pounce on the government’s expected SMR announcement. They called on Ottawa to halt its plans to fund the experimental technology.

While nuclear power generation produces no greenhouse gas emissions, a major problem facing the industry is its growing mound of radioactive waste. This week, the government embarked on a round of consultations about what do with the dangerous material.

Dozens of groups, including the NDP, Bloc Quebecois, Green Party and some Indigenous organizations, oppose the plan for developing small modular reactors. They want the government to fight climate change by investing more in renewable energy and energy efficiency.

“We have options that are cheaper and safer and will be available quicker,” Richard Cannings, the NDP natural resources critic, said in a statement.

Lefebvre, however, said the global market for SMRs is expected to be worth between $150 billion and $300 billion a year by 2040. As one of the world’s largest producers of uranium, Canada has to be part of the wave both for economic and environmental reasons, he said.

“There’s a growing demand for smaller, simpler and affordable nuclear technology energy,” Lefebvre said.

Joe McBrearty, head of Canadian Nuclear Laboratories, told the conference the company had signed a host agreement this week with Ottawa-based Global First Power for a demonstration SMR at its Chalk River campus in eastern Ontario. A demonstration reactor will allow for the assessment of the technology’s overall viability, he said.

“When talking about deploying a new technology like an SMR, building a demonstration unit is vital to the success of that process,” McBrearty said. “Most importantly, it allows the public to see the reactor, to kick the tires so to speak, and to have confidence in the safety of its operation.”

Continue Reading

Chat

Trending