Connect with us

Ecology

Once More, Into the Unknown

Published

on

[ad_1]

Snapshot of the solar system, highlighting the various populations in the Kuiper Belt (colors). That whole outer zone is unexplored...but not for long. (Credit: Wes Fraser, National Research Council of Canada)

Snapshot of the solar system, highlighting the various populations in the Kuiper Belt (colors). That whole outer zone is unexplored…but not for long. (Credit: Wes Fraser, National Research Council of Canada)

Novelists have “It was a dark and stormy night.” For planetary scientists, the equivalent cliche is, “We expect to be surprised.” The story of every new space mission seems to begin that way. No matter how intensely researchers study some solar-system object, no matter how they muster the best resources available on Earth, they are inevitably caught off-guard when they get to study it up close for the first time. And no matter how worn and familiar that cliche may sound, it also rings true every time. Nature’s creativity surpasses human imagination, time after time.

Even by those standards, the flight of the New Horizons probe past Ultima Thule tonight is something special. In the words of Alan Stern, the mission’s principle investigator and spiritual leader, “We’ve never, in the history of spaceflight, gone to a target we know less about.” It’s a type of object never seen up close before, a small (30 kilometers wide) member of the Kuiper Belt. Even more exciting, it belongs to the so-called “cold classical” region of the Kuiper Belt, meaning that it probably has remained largely unchanged for more than 4 billion years, frozen in deep storage 6.5 billion kilometers from the Sun.

Will it look battered from ancient collisions? Will it be covered with organic molecules from the early solar system? Will it resemble Pluto’s moons, or look like a fresh comet, or like something else entirely? Nobody knows.

There are only a handful of previous moments in space exploration that had comparable feelings of plunging into the unknown. One is the Galileo probe’s encounter with Gaspra in 1991, the first time a spacecraft visited an asteroid. Until then, asteroids had been mere dots of light in even the grandest telescopes; the very term “asteroid” refers to their featureless, star-like appearance. Astronomers had many inferences about what asteroids must look like up close, but all of our mental pictures were colored by science fiction and fantasy art.

Asteroid Gaspra seen by the Galileo spacecraft on October 29, 1991, from a distance of 5,300 miles. (Credit: NASA/JPL/USGS)

Asteroid Gaspra seen by the Galileo spacecraft on October 29, 1991, from a distance of 5,300 miles. (Credit: NASA/JPL/USGS)

Then science intruded. I remember seeing the first images of Gaspra and laughing. The rough expectation was that it would look like a battered potato. It looked more like a shark, pointy and oddly smooth, blanketed with dust for reasons that are still not fully understood. Now we have seen 12 other asteroids (13 if you count Ceres as an asteroid rather than as a dwarf planet). OSIRIS-REx is currently exploring Bennu while Hayabusa2 is examining Ryugu. These two little top-shaped asteroid are nothing at all like Gaspra. Asteroids turn out to be diverse, complex, fascinating — surprising.

The Gaspra flyby came 5 years after another journey into the unknown, when an international fleet set off to visit Halley’s Comet in 1986, during one of its legendary once-in-a-lifetime passes through the inner solar system. The Soviets, Japanese, and Europeans all zeroed in on Halley to get the first-ever close look at the nucleus of a comet. (Cash-strapped NASA sadly did not participate in this historic moment.)

Images of Halley's Comet taken by Giotto during its encounter on March 13-14, 1986. (Credit: MPAE/ESA)

Images of Halley’s Comet taken by Giotto during its encounter on March 13-14, 1986. (Credit: MPAE/ESA)

Just before encounter, the European Space Agency’s Giotto probe was struck by a piece of dust weighing about one gram — large enough to knock the spacecraft off-kilter and nearly end the mission. Flight controllers regained contact with the probe just in time and guided it to within 600 kilometers of the cold heart of Halley’s Comet. Rather than being a “dirty snowball,” as astronomers expected, Giotto revealed it to be more of an icy dirtball, dominated by non-ice components. And as the startling images showed, Halley’s spectacular tail begins as a series of irregular patchy geysers, with an explosive beauty all their own.

Earlier still, the twin Voyager probes began the greatest string of first-looks in all of space history. Before Voyagers 1 and 2, the moons of Jupiter and Saturn were little known, and the moons of Uranus and Neptune were completely terra incognita. Then came the scientific surprises: the volcanoes of Io, the methane fog of Titan, the bizarre cliffs and patchwork terrain of Uranus’s Miranda, the nitrogen geysers of Neptune’s Triton.

Like every good reconnaissance mission, Voyager inspired whole volumes of new questions. Prime among them, What was going on beneath the thick orange haze on Titan? It remained a mystery until 2005, when the European Space Agency’s Huygens probe (send in conjunction with NASA’s Cassini mission to Saturn) landed on the surface to take a look. It was the first view from the surface of a moon other than our own, the first landing on an object in the outer solar system.

I was reporting from Garching, Germany, when the first images and data came in from Huygens. Aerial views taken by the probe on the way down showed a landscape of branching riverbeds and dark features that resembled shorelines. The images were bafflingly familiar. It looked remarkably like New Jersey seen from the air. Then came the views from the surface, where Huygens touched down on a squishy surface littered with rounded rocks under an orange sky.

First view from the surface of Titan, returned by the Huygens lander on January 14, 2005. (Credit: ESA/NASA)

First view from the surface of Titan, returned by the Huygens lander on January 14, 2005. (Credit: ESA/NASA)

Nothing on Titan is as it seems, however. The rocks on the surface are made of water ice. The hazy clouds of petrochemical smog, a miasma of hydrocarbons. The river beds really were riverbeds, but the liquid that flowed in them was cold methane and ethane, which falls as rain and collects in lakes near Titan’s poles. At every step, Nature manages to confound, delight, challenge, and surprise even the more prepared researchers.

Now it is Ultima Thule’s turn. Right now we know almost nothing of its composition, its shape, even its orientation and rotation period. All we know is that a few dozen common elements, left to their own devices for billions of years, manipulated by the inexorable influences of gravity and radiation, have surely cooked up a landscape unlike any humans have seen before. Scientists await the results from New Horizons with the anticipation that comes not from ignorance, but from incomplete enlightenment. It’s an important distinction, one that Michele Bannister of Queens College makes deftly.

Screen Shot 2018-12-31 at 3.07.31 PMWe are venturing into the unknown in the best possible way: Our minds primed with knowledge yet open to new wonders, every surprise treated as an invitation to grasp a bit more about our place in the vast order of the cosmos.

[ad_2]

Source link

قالب وردپرس

Ecology

Yukon and Northern BC First Nations tackle climate change using Indigenous knowledge and science

Published

on

By

YUKON, June 18, 2021 /CNW/ – The Government of Canada is working together in partnership with Indigenous and Northern communities in finding solutions to adapt to the impacts of climate change in the North.

Today, Minister of Northern Affairs, Daniel Vandal, along with Parliamentary Secretary to the Minister of Economic Development and Official Languages (Canadian Northern Economic Development Agency), Larry Bagnell, highlighted progress on three unique, Indigenous-led projects that are helping communities in Yukon and Northern British Columbia adapt to the challenges posed by climate change.

The Minister and Parliamentary Secretary met virtually with Carcross/Tagish First Nation (C/TFN) to learn about their community-led climate change monitoring program. C/TFN has partnered with Tsay Keh Dene Nation (TKDN) and Chu Cho Environmental of Prince George, British Columbia, to build a community-led monitoring project that examines environmental data and Indigenous knowledge to create a holistic picture of how the climate is changing across C/TFN and TKDN traditional territories. The project combines tracking of current and historical climate trends with knowledge shared by Elders while also providing opportunities for youth mentorship and climate change awareness.

The Taku River Tlingit First Nation (TRTFN) is also leading a unique project to assess the impacts of climate change within their traditional territory. Climate change is causing many of the culturally significant ice patches to melt, exposing organic artifacts to oxygen and leading to rapid deterioration. The TRTFN ice patch mapping project will involve performing archaeological assessments to prevent the degradation of artifacts. Research will be guided by traditional knowledge, Elders and oral histories, when available, and heavily involve community, Elders, youth and Knowledge Keepers.

The Pelly Crossing Selkirk Development Corporation is leading the Selkirk Wind Resource Assessment project through the installation of a Sonic Detection and Ranging (SODAR) system. The initiative includes a feasibility study leading up to the construction of a renewable energy facility, including wind, solar and battery energy storage. Expanding clean energy within the region will have direct benefits for communities, including reduced reliance on diesel, job creation and revenue generation for Selkirk First Nation. 

These projects are delivering important environmental, social and economic benefits that lead to healthier, more sustainable and resilient communities across Yukon and Northern British Columbia. They also build community clean energy capacity and help to avoid the impacts of climate change.

Continue Reading

Ecology

Atlantic Provinces Ready For Aquaculture Growth

Published

on

By

Aquaculture is an important economic driver for rural, coastal and Indigenous communities, and Atlantic Canada is well positioned to increase aquaculture production as global demand for sustainably sourced seafood grows.

That is why the ministers responsible for aquaculture in the Atlantic provinces have agreed to the ongoing development and management of their industries based on common principles. A new memorandum of understanding has been signed by the four ministers, which extends the previous agreement signed in 2008.

“In a time when food security is especially important, it is good to see our aquaculture industry has grown steadily and is poised for continued growth in 2021 based on environmentally responsible, science-based policies and practices,” said Keith Colwell, Minister of Fisheries and Aquaculture for Nova Scotia. “Our Atlantic partnership continues to help the industry grow sustainably.”

Cooperation between the provinces and the aquaculture industry has led to improvements in pest management, environmentally sustainable aquaculture methods, aquatic animal health and policies to support the shared use of marine and freshwater resources. It also aims to align regulation and policy between the provinces to make the regulatory requirements easier to understand by industry and the public.

Each province has a comprehensive and robust legislative and regulatory framework to ensure environmental sustainability, economic prosperity and public accountability. The provinces update their legislation and regulations regularly. Nova Scotia revamped its regulatory framework in 2015; New Brunswick received Royal Assent for a new Aquaculture Act in 2019 and is working on the supporting regulations; Newfoundland and Labrador completely revised its aquaculture policy in 2019; and Prince Edward Island has recently drafted a new Aquaculture Act.

The ministers have agreed to continue to use science-based evidence for management decisions, thereby increasing public and investor confidence in the Atlantic Canadian aquaculture industry.

Continue Reading

Ecology

COMING SOON: A Healthy Environment and a Healthy Economy 2.0

Published

on

By

We all want the same thing: a clean and responsible energy future for our children and future generations while continuing to enjoy a high standard of living.

On December 11, 2020, the Prime Minister announced a new climate plan which he claimed will help achieve Canada’s economic and environmental goals.

The proposed plan by Environment and Climate Change Canada (ECCC) entitled “A Healthy Environment and a Healthy Economy” will have an initial investment of $15 billion of taxpayer’s money. It is built on 5 pillars of action:

  1) Making the Places Canadians Live and Gather More Affordable by Cutting Energy Waste

2) Making Clean, Affordable Transportation and Power Available in Every Community

3) Continuing to Ensure Pollution isn’t Free and Households Get More Money Back

4) Building Canada’s Clean Industrial Advantage

5) Embracing the Power of Nature to Support Healthier Families and More Resilient Communities  

In my paper, “A Healthy Environment and a Healthy Economy 2.0” I will objectively critique each pillar in the government’s new climate plan and provide alternative solutions to the same issues.

  This is an alternative plan that supports workers, protects lower income earners and creates economic growth while respecting the environment and focusing on the dignity of work.

  This plan abandons virtue-signaling projects and relies on Canadian ingenuity to build our economy and restore Canada’s role of responsible leadership in the world.

Continue Reading

Chat

Trending