Connect with us

Technology

Astronomers believe telescopes captured birth of black hole or neutron star

Editor

Published

on

[ad_1]

In June 2018, telescopes in Hawaii picked up a bright burst in a galaxy 200 million light-years away. Initially, astronomers believed it was a supernova, a star that explodes at the end of its life. Except this didn’t behave like a supernova should. Now, in a new paper published in the Astrophysical Journal, astronomers say they believe they witnessed the birth of a black hole or an incredibly dense and powerful stellar object known as a neutron star.

Stars are giant balls of gas that are constantly bubbling with activity, mainly fusing hydrogen into helium. As they age, they create different elements. For stars that are roughly five times more massive than our own sun or larger, their core eventually is converted into iron. That’s when fusion stops and the forces that were balancing the inward and outward pressure end. The star explodes. 

The eruption witnessed in June came from a galaxy called CGCG 137-068. Though astronomers were thrilled to have captured a supernova, they were also somewhat perplexed.

For one, it was extremely bright, roughly 10 to 100 times brighter than most supernovas. Also, when a star explodes, it eventually fades, but in this case the star — dubbed AT2018cow, nicknamed “The Cow” — faded much faster than other supernovas. As well, the particles flew out at 30,000 km/s, about 10 per cent the speed of light, which caused it to flare up and fade much faster than other supernovas. And instead of reaching peak brightness in weeks, it did so in days.

This picture shows the optical light image of AT2018cow shortly after it erupted. The light created from the event far outshone its host galaxy. (Giacomo Terreran/Northwestern University)

Either this wasn’t a supernova or it was something that astronomers had never witnessed before. And a team of researchers wanted to solve the puzzle.

The team studied the star in different wavelengths, using x-rays, hard x-rays (those that are 10 times more powerful than ordinary x-rays), gamma rays and radio waves.

“Given how luminous this thing was and how quickly it went to peak, we knew right away we needed a different source of energy than the normal supernovae,” said Raffaela Margutti, an astrophysicist at Northwestern University in Illinois who also led the research. “The Cow started to look very, very different from anything we had ever seen in the x-ray.”

They theorize that stellar debris swirled around the object’s event horizon — a region around a black hole beyond which nothing can escape — creating the incredibly bright glow that was seen in different wavelengths.

This image shows an artist’s impression of a stellar mass supernova explosion. (ESO/M. Kornmesser)

Iair Arcavi, an astrophysicist at the University of California, Santa Barbara, who was not involved in the study, says the interpretation is “very interesting.”

“I think it’s a really strong possibility that this is powered by what we call a central engine, so some kind of energy source in the centre. It’s definitely possible,” he said. 

But, he added, this doesn’t mean the case is closed.

“I think there are or will be other suggestions as well. I think this is not the final say in what this was,” he said. “But they did some very serious modelling work and analyzing the observations. As a whole, I think this has been the most comprehensive paper to come out about this object.”

A second possibility

But a black hole isn’t the only explanation.

If a star is massive enough, it can collapse into a black hole. But sometimes they also form a neutron star. These types of stars are the size of a small city, but far more massive than the sun: one teaspoon of the material would weigh 10 million tons. They also have an intense gravitational field. Earth’s escape velocity — the speed at which we can be free of its gravitational pull — is about 11.2 km/s. For a neutron star, it would be 0.4 times the speed of light.

The scientists believe that this could be another explanation for the brightening: that a neutron star could have been pulling in material and brightened as it formed.

Arcavi who is studying a puzzling object of his own — a supernova that shone for six times longer than most — said these sorts of mysterious objects are part of what makes the universe so fun to study.

“I think we’ll solve some of [the mysteries] — maybe not all — and we’ll definitely discover new puzzles,” he said. “And that’s how we move forward.”

[ad_2]

Source link

قالب وردپرس

Technology

More groups join in support of women in STEM program at Carleton

Editor

Published

on

By

OTTAWA — Major companies and government partners are lending their support to Carleton University’s newly established Women in Engineering and Information Technology Program.

The list of supporters includes Mississauga-based construction company EllisDon.

The latest to announce their support for the program also include BlackBerry QNX, CIRA (Canadian Internet Registration Authority), Ericsson, Nokia, Solace, Trend Micro, the Canadian Nuclear Safety Commission, CGI, Gastops, Leonardo DRS, Lockheed Martin Canada, Amdocs and Ross.

The program is officially set to launch this September.

It is being led by Carleton’s Faculty of Engineering and Design with the goal of establishing meaningful partnerships in support of women in STEM.  

The program will host events for women students to build relationships with industry and government partners, create mentorship opportunities, as well as establish a special fund to support allies at Carleton in meeting equity, diversity and inclusion goals.

Continue Reading

Technology

VR tech to revolutionize commercial driver training

Editor

Published

on

By

Serious Labs seems to have found a way from tragedy to triumph? The Edmonton-based firm designs and manufactures virtual reality simulators to standardize training programs for operators of heavy equipment such as aerial lifts, cranes, forklifts, and commercial trucks. These simulators enable operators to acquire and practice operational skills for the job safety and efficiency in a risk-free virtual environment so they can work more safely and efficiently.

The 2018 Humboldt bus catastrophe sent shock waves across the industry. The tragedy highlighted the need for standardized commercial driver training and testing. It also contributed to the acceleration of the federal government implementing a Mandatory Entry-Level Training (MELT) program for Class 1 & 2 drivers currently being adopted across Canada. MELT is a much more rigorous standard that promotes safety and in-depth practice for new drivers.

Enter Serious Labs. By proposing to harness the power of virtual reality (VR), Serious Labs has earned considerable funding to develop a VR commercial truck driving simulator.

The Government of Alberta has awarded $1 million, and Emissions Reduction Alberta (ERA) is contributing an additional $2 million for the simulator development. Commercial deployment is estimated to begin in 2024, with the simulator to be made available across Canada and the United States, and with the Alberta Motor Transport Association (AMTA) helping to provide simulator tests to certify that driver trainees have attained the appropriate standard. West Tech Report recently took the opportunity to chat with Serious Labs CEO, Jim Colvin, about the environmental and labour benefits of VR Driver Training, as well as the unique way that Colvin went from angel investor to CEO of the company.

Continue Reading

Technology

Next-Gen Tech Company Pops on New Cover Detection Test

Editor

Published

on

By

While the world comes out of the initial stages of the pandemic, COVID-19 will be continue to be a threat for some time to come. Companies, such as Zen Graphene, are working on ways to detect the virus and its variants and are on the forefronts of technology.

Nanotechnology firm ZEN Graphene Solutions Ltd. (TSX-Venture:ZEN) (OTCPK:ZENYF), is working to develop technology to help detect the COVID-19 virus and its variants. The firm signed an exclusive agreement with McMaster University to be the global commercializing partner for a newly developed aptamer-based, SARS-CoV-2 rapid detection technology.

This patent-pending technology uses clinical samples from patients and was funded by the Canadian Institutes of Health Research. The test is considered extremely accurate, scalable, saliva-based, affordable, and provides results in under 10 minutes.

Shares were trading up over 5% to $3.07 in early afternoon trade.

Continue Reading

Chat

Trending