Connect with us

Technology

Amazon minimum wage hike barely made a dent in its operating costs

Editor

Published

on

[ad_1]

Founder of space company Blue Origin, Jeff Bezos, speaks about the future of commercial space travel during the 32nd Space Symposium on April 12, 2016 in Colorado Springs, Colorado.Amazon CEO Jeff Bezos.Brent Lewis/The Denver Post via Getty Images

  • Amazon announced in October 2018 that it was raising its minimum wage to $15 per hour.
  • But the rise for hundreds of thousands of workers has barely made a dent in its operating expenses, which grew at a similar or slower rate than the rest of the year.
  • One theory is that Amazon balanced out the increased salaries by slashing bonuses and ending its restricted stock unit program.
  • Some workers told Business Insider that they were actually worse off over the holiday period.

Amazon’s minimum wage hike has barely made a dent in the online retail giant’s operating expenses — and it might explain why some workers say they are out of pocket.

In November last year, Amazon increased its minimum wage to $15 in the US and between £9.50 ($12.40) and £10.50 ($13.70) in the UK, impacting 267,000 permanent workers and 200,000 seasonal employees.

A seasonal worker who joined Amazon in October told Business Insider that their salary jumped from $10 to $15, but it would have been different for different workers.

It would not be outlandish to expect such pay raises to be reflected in an increased cost of doing business, but for Amazon, it hardly made a difference to the growth in its operating expenses.

According to the company’s earnings for the three months to the end of December (so including two months of higher salaries for hundreds of thousands of employees), Amazon’s operating expenses grew at a similar or slower rate to the rest of the year.

Here’s a breakdown of Amazon’s operating costs across the year:

Q4: $68.6 billion (up 17.7% year-on-year)
Q3: $62.8 billion (up 17.6%)
Q2: $49.9 billion (up 33.7%)
Q1: $49.1 billion (up 41.5%)

Amazon’s operating expenses include a ton of other cost lines beyond staff salaries, including things like marketing and technology. These are of course prone to fluctuation, which could have played a part in expenses not rising at a particularly remarkable rate.

But there is another theory as to why the minimum wage increase has barely made a dent — it has been balanced out by Amazon slashing bonuses and ending its restricted stock unit program (RSU).

Read more: Here’s how minimum wage compares at Amazon, Walmart, Costco, and more retail giants as companies battle to win over workers

Amazon workers in the US and the UK told Business Insider that the minimum wage increase had actually had a negative impact on their pay packets over the holiday period. Meanwhile, Wired spoke to an Amazon employee last year who estimated they would lose at least $1,400 a year following the pay rise.

Trade unions also noted the removal of incentives and stock options. “If Jeff Bezos — the richest man in the world — really wants to give hardworking staff a pay rise, he should let them keep their share options as well as increasing their hourly rate,” said Tim Roache, the general secretary of the UK’s GMB union.

Business Insider has contacted Amazon for comment. In a statement last year, the firm said:

“The significant increase in hourly cash wages more than compensates for the phase out of incentive pay and RSUs. We can confirm that all hourly Operations and Customer Service employees will see an increase in their total compensation as a result of this announcement. In addition, because it’s no longer incentive-based, the compensation will be more immediate and predictable.”

Amazon announced its new minimum wage of $15 per hour following pressure from politicians like Bernie Sanders, who demanded that CEO Jeff Bezos pay Amazon staff a fair wage.

As a result of the change, Amazon said on Thursday that it received 850,000 applications for hourly work in October 2018 — more than double its previous record. Amazon did not say how many of those applications were successful.

[ad_2]

Source link

قالب وردپرس

Technology

Artificial intelligence pioneers win tech’s ‘Nobel Prize’

Editor

Published

on

By

Computers have become so smart during the past 20 years that people don’t think twice about chatting with digital assistants like Alexa and Siri or seeing their friends automatically tagged in Facebook pictures.

But making those quantum leaps from science fiction to reality required hard work from computer scientists like Yoshua Bengio, Geoffrey Hinton and Yann LeCun. The trio tapped into their own brainpower to make it possible for machines to learn like humans, a breakthrough now commonly known as “artificial intelligence,” or AI.

Their insights and persistence were rewarded Wednesday with the Turing Award, an honor that has become known as technology industry’s version of the Nobel Prize. It comes with a $1 million prize funded by Google, a company where AI has become part of its DNA.

The award marks the latest recognition of the instrumental role that artificial intelligence will likely play in redefining the relationship between humanity and technology in the decades ahead.

Artificial intelligence is now one of the fastest-growing areas in all of science and one of the most talked-about topics in society,” said Cherri Pancake, president of the Association for Computing Machinery, the group behind the Turing Award.

Although they have known each other for than 30 years, Bengio, Hinton and LeCun have mostly worked separately on technology known as neural networks. These are the electronic engines that power tasks such as facial and speech recognition, areas where computers have made enormous strides over the past decade. Such neural networks also are a critical component of robotic systems that are automating a wide range of other human activity, including driving.

Their belief in the power of neural networks was once mocked by their peers, Hinton said. No more. He now works at Google as a vice president and senior fellow while LeCun is chief AI scientist at Facebook. Bengio remains immersed in academia as a University of Montreal professor in addition to serving as scientific director at the Artificial Intelligence Institute in Quebec.

“For a long time, people thought what the three of us were doing was nonsense,” Hinton said in an interview with The Associated Press. “They thought we were very misguided and what we were doing was a very surprising thing for apparently intelligent people to waste their time on. My message to young researchers is, don’t be put off if everyone tells you what are doing is silly.” Now, some people are worried that the results of the researchers’ efforts might spiral out of control.

While the AI revolution is raising hopes that computers will make most people’s lives more convenient and enjoyable, it’s also stoking fears that humanity eventually will be living at the mercy of machines.

Bengio, Hinton and LeCun share some of those concerns especially the doomsday scenarios that envision AI technology developed into weapons systems that wipe out humanity.

But they are far more optimistic about the other prospects of AI empowering computers to deliver more accurate warnings about floods and earthquakes, for instance, or detecting health risks, such as cancer and heart attacks, far earlier than human doctors.

“One thing is very clear, the techniques that we developed can be used for an enormous amount of good affecting hundreds of millions of people,” Hinton said.

Continue Reading

Technology

Lamborghini’s latest Huracán is a supercar with a supercomputer

Editor

Published

on

By

Over the past few decades, technology has made vehicles safer and easier to drive. Anti-lock brakes, traction control, torque vectoring and other bits of tech keep cars on the road instead of flying into a ditch when things get hairy. It’s why newer cars typically handle corners better than older cars.

At Lamborghini, they’ve taken things further with their new Lamborghini Dinamica Veicolo Integrata or LDVI system. The Engine Control Unit (ECU) takes data from the entire car and uses it to adjust how the new Huracán EVO Spyder drives in real time (actually in less than 20 milliseconds. But that’s about as close as you can get to real time). Cars have been doing some form of this for a while but the Italian automaker needs to be able to do this at incredible speeds and in environments your typical sedan or SUV doesn’t encounter.

At Lamborghini, they’ve taken things further with their new Lamborghini Dinamica Veicolo Integrata or LDVI system. The Engine Control Unit (ECU) takes data from the entire car and uses it to adjust how the new Huracán EVO Spyder drives in real time (actually in less than 20 milliseconds. But that’s about as close as you can get to real time). Cars have been doing some form of this for a while but the Italian automaker needs to be able to do this at incredible speeds and in environments your typical sedan or SUV doesn’t encounter.

With this technology, Lamborghini is able to take the raw power of an all-wheel-drive supercar with a V10 engine and 630 horsepower and tame it, just enough, so your average driver (who can shell out $287,400) can enjoy themselves behind the wheel of the all-wheel-steering vehicle without, you know, flying into a ditch.

To achieve this, the LVDI is actually a super fast central processing unit that takes in data about the road surface, the car’s setup, the tires and how the driver is driving the vehicle. It then uses that info to control various aspects of the Huracan.

The system works in concert with the Lamborghini Piattaforma Inerziale (LPI) version 2.0 hardware sensors. This system uses gyroscopes and accelerometers located at the car’s center of gravity. It measures the vehicle’s movements and shares that data with the LVDI computer.

Lamborghini says the system is so in tune with all aspects of a drive that it can actually predict the best driving setup for the next moment. In other words, if you’re behind the wheel flying around corners on a back road, the system will recognize your behavior as you enter a corner and adjust itself.

“Where it’s possible to do a bigger jump in the future is with the intelligent use of four-wheel drive and four-wheel steering and the movement and control of the torque wheel by wheel in a way that can be more predictable and that is what we have with the Huracan EVO,” said Maurizio Reggiani, chief technology officer of Automobili Lamborghini.

Lamborghini is thinking about a world beyond a completely gas-powered engine though — it has a pipeline for hybrid and electric vehicles. But Reggiani notes that Lamborghini will probably be the last automaker to leave behind a large growling power plant.

Putting all that power to the ground in a controllable way requires an incredible amount of technology — that’s where LVDI and other pieces of technology come in. The automaker believes the result is a driving experience that matches exactly what the driver wants, regardless of the mode the car is in. Whether it be Strada, Sport, or the track ready Corsa, the vehicle (in a controlled way) should deliver.

That control allows a driver to do something that typically takes months if not years to master: drifting. It goes against what the car wants to do — lose traction. But in Sport mode it’s possible. To do that, the vehicle has to figure out (in real time and safely) things like what angle it wants to slide. The Huracán EVO Spyder has to understand that you want to drift and not fight that. If it does, it will jerk the car (and driver) back into alignment.

Lamborghini Huracan EVO Spyder

To relive your Fast and Furious dreams, the automaker started where lots of companies start with new technology: In the simulator. But a computer can’t faithfully reproduce the real world. Mostly that has to do with tires, a variable that’s tough to predict because of the density of the rubber’s compound and its wear.

Then, of course, there’s the driver. We all drive differently but the experience must be the same for everyone. It’s important that even with all that technology, it’s still a driving experience. “We don’t want to have something that substitutes the driver. We want to have a car that is able to understand what the driver wants to do,” Reggiani said.

Lamborghini is known for large engines, intense growls, striking design and bank-busting prices. But the reality is all that power would be useless if drivers couldn’t actually control the car. The automaker’s latest system makes that possible for everyone. Sure, only a select few can own a Lamborghini, but everyone can appreciate a system that makes driving safer while simultaneously more fun.

Continue Reading

Technology

This device makes it easy for the elderly to stay in touch with their loved ones

Editor

Published

on

By

Only 20 percent of over-75s in the UK have a smartphone compared to 95 percent of 16-to-24-year-olds. Digital technologies change fast, become obsolete quickly and usually need you to spend a bit of time learning how to use them.

This helps explain why most older adults tend to use what they know best when it comes to communicating, which usually means a phone call via a landline or basic mobile, instead of a quick text or social media update.

Love tech? You should go to TNW2019

Find out whySee more

But it doesn’t have to be this way. My colleague Massimo Micocci and I have recently designed a more modern device we hope will help older people stay in more frequent touch with instant updates, but that has a familiar feel to it. By drawing on smart materials and what we call “design metaphors”, we hope to make new technology more accessible.

When older people don’t have access to instant messaging, a phone call or a visit may be the only way for friends and family to check their loved ones are well. And doing so more than (or even) once a day might not be feasible or wanted.

Similarly, older people might feel that ringing their relatives morning and night just to let them know they’re OK would be an inconvenience. And while you can buy specialized monitoring devices that record people’s movements around their home, these often feel like an invasion of privacy.

With this in mind, we developed something that lets older people broadcast their status to their families like a social media update. Our device (which is designed for research purposes rather than commercial development) looks like an analogue radio. But it lets users transmit information about their activity captured from a wearable heartbeat sensor in a way that is entertaining and intuitive, and only shared with selected group of followers.

The keep-in-touch. Author provided

The information includes how energetic their current activity is, for example whether they are conducting an active task such as gardening, or a relaxing and restful one such as reading a book.

By designing the device to evoke technology with which people will feel instantly familiar, we’re using the principle of design metaphor. Most people find it easier to interact with devices that resemble products they have already used.

In cognitive psychology, this is known as inferential learning, referring to when someone applies established knowledge in their brain to a new context. The design of our “radio” device makes it easier for users to work out how to use it, based on their previous interactions with traditional radios – even though it has a very different function.

Giving users control

There are plenty of systems that enable people to monitor older family members. But usually these are fully passive, where the older adults are observed directly through cameras and sensors around their homes. Or they are fully active, for example mobile phones that require the older adults to stop what they’re doing and respond right away.

Instead, our device lets people choose the level of communication they want. It runs in the background and doesn’t transmit detailed information such as images of people in their homes. This makes it a much less intrusive way of letting someone know you’re OK.

We also wanted to make the device very easy to understand, interpret and remember. So rather than having an information screen that showed text or images, we wanted to create a display that used so-called smart materials to convey what the user was doing.

In this context, smart materials are those that can change color, shape, viscosity or how much light they emit. Our research showed that light-emitting materials were the best way of conveying messages without words for both under and over-60s.

The “radio” is just a research prototype but it has allowed us to understand that the combination of innovative materials and familiar artefacts can be a successful way to encourage aging users to adopt new technologies. In this way, smart materials and design metaphors could help bridge the digital gap and promote innovation among older consumers.

This article is republished from The Conversation by Gabriella Spinelli, Reader in Design Innovation, Brunel University London under a Creative Commons license. Read the original article.

TNW Conference 2019 is coming! Check out our glorious new location, an inspiring lineup of speakers and activities, and how to be a part of this annual tech bonanza by clicking here.

Continue Reading

Chat

Trending