Connect with us

Ecology

The Case for Protecting the Apollo Landing Areas as Heritage Sites

Editor

Published

on

[ad_1]

Neil Armstrong took this photograph of Buzz Aldrin during the Apollo 11 extravehicular activity on the moon. (Credit: NASA)

Neil Armstrong took this photograph of Buzz Aldrin during the Apollo 11 extravehicular activity on the moon. (Credit: NASA)

Why did the hominin cross the plain? We may never know. But anthropologists are pretty sure that a smattering of bare footprints preserved in volcanic ash in Laetoli, Tanzania bear witness to an evolutionary milestone. These small steps, taken roughly 3.5 million years ago, mark an early successful attempt by our common human ancestor to stand upright and stride on two feet, instead of four.

Nearly 50 years ago, Neil Armstrong also took a few small steps. On the moon. His bootprints, along with those of fellow astronaut Buzz Aldrin, are preserved in the lunar soil, called regolith, on what Aldrin described as the “magnificent desolation” of the moon’s surface. These prints, too, bear witness to an evolutionary milestone, as well as humankind’s greatest technological achievement. What’s more, they memorialize the work of the many individuals who worked to unlock the secrets of space and send humans there. And those small steps pay homage to the daring men and women who have dedicated – and those who lost – their lives to space exploration.

The evidence left by our bipedal ancestors are recognized by the international community and protected as human heritage. But the evidence of humanity’s first off-world exploits on the moon are not. These events, separated by 3.5 million years, demonstrate the same uniquely human desire to achieve, explore and triumph. They are a manifestation of our common human history. And they should be treated with equal respect and deference.

I’m a professor of aviation and space law and an associate director of the Air and Space Law Program at the University of Mississippi School of Law. My work focuses on the development of laws and guidelines that will assist and promote the successful and sustainable use of space and our transition into a multi-planet species. During the course of my research, I was shocked to discover that the bootprints left on the moon, and all they memorialize and represent, are not recognized as human heritage and may be accidentally or intentionally damaged or defaced without penalty.

One of Buzz Aldrin’s first bootprints from his Apollo 11 moonwalk on July 20, 1969. (Credit: NASA)

One of Buzz Aldrin’s first bootprints from his Apollo 11 moonwalk on July 20, 1969. (Credit: NASA)

Heritage Gets No Respect

On Earth, we see evidence of this type of insensitivity all the time. The Islamic State has destroyed countless cultural artifacts, but it’s not just terrorists. People steal pieces of the Pyramids in Gaza and sell them to willing tourists. Tourists themselves see no harm in grabbing cobblestones that mark roads built by ancient Romans or snapping the thumbs off terra cotta warriors crafted centuries ago to honor a Chinese emperor.

And, just last year, Sotheby’s auctioned off a bag – the first bag that Neil Armstrong used to collect the first moon rocks and dust ever returned to Earth. The sale was entirely legal. This “first bag” ended up in the hands of a private individual after the U.S. government erroneously allowed it to be included in a public auction. Rather than return the bag to NASA, its new owner sold it to the highest bidder for US$1.8 million. That’s a hefty price tag and a terrible message. Imagine how much a private collector would pay for remnants of the first flag planted on the moon? Or even just some dust from Mare Tranquilitatis?

The fact is if people don’t think sites are important, there is no way to guarantee their safety – or the security of the artifacts they host. Had the first bag been recognized as an artifact, its trade would have been illegal.

Introducing ‘For All Moonkind’

That’s why I co-founded the nonprofit For All Moonkind, the only organization in the world committed to making sure these sites are protected. Our mission is to ensure the Apollo 11 landing and similar sites in outer space are recognized for their outstanding value to humanity and protected, like those small steps in Laetoli, for posterity by the international community as part of our common human heritage.

Our group of nearly 100 volunteers – space lawyers, archaeologists, scientists, engineers, educators and communicators from five continents – is working together to build the framework that will assure a sustainable balance between protection and development in space.

Here on Earth, the international community identifies important sites by placing them on the World Heritage List, created by a convention signed by 193 nations. In this way, the international community has agreed to protect things like the cave paintings in Lascaux, France and Stonehenge, a ring of standing stones in Wiltshire, England.

There are no equivalent laws or internationally recognized regulations or even principles that protect the Apollo 11 landing site, known as Tranquility Base, or any other sites on the moon or in space. There is no law against running over the first bootprints imprinted on the moon. Or erasing them. Or carving them out of the moon’s regolith and selling them to the highest bidder.

Between 1957 and 1975, the international community did dedicate a tremendous amount of time and effort to negotiating a set of treaties and conventions that would, it was hoped, prevent the militarization of space and ensure freedom of access and exploration for all nations. At the time, cultural heritage in outer space did not exist and was not a concern. As such, it is not surprising that the Outer Space Treaty, which entered into force in 1967, doesn’t address the protection of human heritage. Today, this omission is perilous.

Because, sadly, humans are capable of reprehensible acts.

Back to the Moon

Currently there are a comparative trickle of companies and nations with their sights on returning to the moon. China landed a rover on the far side in January. An Israeli company hopes to reach the moon in March. At least three more private companies have plans to send rovers in 2020. The U.S., Russia and China are all planning human missions to the moon. The European Space Agency has its sights on an entire Moon Village.

But as history shows, this trickle of explorers could soon become a rush. As we straddle the threshold of true space-faring capability, we have an extraordinary opportunity. We have time to protect our common heritage, humanity’s first steps, on the moon before it is vandalized or destroyed.

If our hominin ancestor had a name, it is lost to history. Conversely, English novelist J.G. Ballard suggested that Neil Armstrong may well be the only human being of our time remembered 50,000 years from now.

If we do this right, 3.5 million years from now, not only will his name be remembered, his bootprint will remain preserved and the story of how Tranquility Base became the cradle of our space-faring future will be remembered forever, along with the lessons of tumultuous history that got us to the moon. These lessons will help us come together as a human community and ultimately advance forward as a species.

To allow anything else to happen would be a giant mistake.The Conversation

Michelle L.D. Hanlon, Professor of Air and Space Law, University of Mississippi

This article is republished from The Conversation under a Creative Commons license. Read the original article.

[ad_2]

Source link

قالب وردپرس

Ecology

What if a jolt of electricity could make you happy?

Editor

Published

on

By

[ad_1]

Scientists found a way to literally spark joy using joly of electricity. (Credit: icon99/shutterstock)

Scientists found a way to literally spark joy using jolts of electricity. (Credit: icon99/shutterstock)

People all around the world (or at least where Netflix is available) have been exhausting themselves of late trying to “spark joy” in their lives. The urge comes from cleaning guru Marie Kondo, whose philosophy rests on the principle that we should rid our homes and minds of things that don’t inspire bursts of pleasure.

The message resonates, in part, because it ties positivity to the world of material things. Happiness is in our minds. So having a tangible mechanism for producing joy is understandably comforting.

But there’s a simpler way to spark joy, if we really want to get literal about it. Any emotion we feel has a physical cause inside our brains. Electrical charges pass from neuron to neuron, spreading ripples of thought and feeling. What we call happiness is just electricity. And now researchers say they’ve found a remarkably specific means of triggering the electrical fireworks that add up to happiness in our brains. By electrically stimulating a brain region known as the cingulum, scientists created spontaneous laughter and a sense of calm and joy in three different patients.

The find could lead to treatments for anxiety and depression, and it hints at insights into the very roots of our emotions themselves.

An artist's illustration shows how an electrode tapped into the cingulum. (Credit: From Bijanki et al, J. Clin. Invest. (2019). Courtesy of American Society for Clinical Investigation)

An artist’s illustration shows how an electrode tapped into the cingulum. (Courtesy of American Society for Clinical Investigation)

Unexpected Bliss

The young woman is clad in hospital garb, sitting upright in a bed. A white hospital cap mushrooms above her head, wires splay from its rear. She’s due for brain surgery in a few days to treat a difficult, disruptive kind of epilepsy. She’s been worried and anxious.

She breaks into a radiant smile, laughter flowing uninhibited.

“I’m kind of like smiling because I can’t help it,” she says. A bit later, “Sorry, that’s just a really good feeling. That’s awesome.”

Neuroscientists just administered a tiny jolt of electricity to wires threaded through her skull and into her brain. The wires are there to guide surgeons to the source of her seizures. But before the procedure, she’s agreed to play guinea pig to a team of Emory University researchers.

Patients like her offer an unprecedented opportunity for researchers to test the workings of various brain regions with unparalleled specificity. By delivering targeted bursts of electricity through the electrodes, they can watch what happens when specific neural circuits are activated.

The team was sending small bursts of electricity to her cingulum, a horseshoe of brain matter that links to regions associated with emotion, self-assessment, social interaction and motivation, among other things. It’s also known to regulate anxiety and depression.

This kind of research, though hardly common, is not new. The patient’s reaction is.

“It was really exciting,” says Kelly Bijanki, a neuroscientist at Emory University who studies behavioral neuromodulation. She was one of the scientists working with the young woman, whose name was not given for privacy reasons, that day. She says the kind of spontaneous joy she saw was unprecedented.

Experiments with brain stimulation have elicited laughter and smiles before. But those responses seemed mechanical. Bijanki says the patients usually described it as a purely motor response. “Their body has laughed, but there’s no content to it.”

This case was different. There was real warmth behind the laughter; true happiness in her voice. At one point, the patient reported she was “so happy she could cry,” the researchers write in their paper.

“The way she was laughing was really infectious,” Bijanki says. “The whole room felt different: she was laughing, she was having a good time, and not afraid. Just that social, emotional contagion took over.”

Further tests confirmed the response. They conducted sham trials, telling the patient that they were providing stimulation when they weren’t. She didn’t react. They tested various levels of stimulation and saw that the more electricity they delivered, the stronger the joyous reaction was. The pattern remained the same: An initial burst of exultation faded into a state of happy relaxation after several seconds.

The researchers found no drawbacks to the treatment, either, they report in a paper in the Journal of Clinical Investigation. Her language skills and memory remained perfectly intact, and they saw no ill aftereffects of the stimulation.

In a screengrab from the scientists' experiment, the patient feels overwhelming joy even while pondering her dog dying. (Credit:)

In a screengrab from the scientists’ experiment, the patient feels overwhelming joy even while pondering her dog dying. (Credit: Bijanki et al, Journal of Clinical Investigation)

Put to the Test

The woman’s impending surgery would require her to remain awake while surgeons probed inside her skull. Their goal was to cut out the tissue responsible for her epilepsy, but it’s a game of millimeters. Doctors must remove enough to ensure that seizures don’t recur, but without causing permanent harm. The patient’s seizures appeared to emanate from a region near to language processing centers. Her job was to stay awake while surgeons worked, reading and talking to ensure they wouldn’t excise anything important.

The brain stimulation turned out to work so well that doctors were able to cut out completely the drugs used to manage anxiety during this type of brain surgery. Those medications can make patients sleepy and unresponsive, so the anesthesiologist decided to stop them midway through. The young woman, her skull opened to surgical tools, breezed through.

“During the surgery … she was telling me jokes about her dad, where prior to turning on the stimulation she had been crying and hyperventilating and right on the edge of panic,” Bijanki says.

To confirm their findings, the researchers performed the same tests with two more epilepsy patients with electrodes similarly implanted in their skulls. They got the same results. Jabs of electricity literally sparking joy inside their heads.

Putting Happiness to Work

It’s too simplistic to say the researchers have stumbled upon the place where joy hides within us. The brain is complex, and emotions well up from more than just a single place. Multiple brain regions are involved, and each contributes a facet to the emotion that we come to know as happiness.

In fact, researchers have found joy in another place in the brain as well. Sameer Sheth, a neurosurgeon at the Baylor College of Medicine, says that he’s had patients report feelings of euphoria during the course of his own work with brain stimulation as well. He was working with the ventral striatum, a region separate from the cingulum, though the two are tightly connected.

Stimulation to the ventral striatum has also produced the same sort of laughter and mood elevation that Bijanki saw, Sheth says.

But just because emotions are neurologically complex doesn’t mean there’s no value to understanding their origins.

“The more we understand this circuitry, the more we can fine tune how to harness that capability within an individual and the better we’ll be able to treat patients with mood disorders,” Sheth says.

Bijanki sees a range of applications for brain stimulation aimed at specific targets, beginning with the kind of surgeries the young epileptic was undergoing. By precluding the use of sedatives, the find might give brain surgeons new options when performing the kind of procedures the young woman went through. Allowing patients to give more feedback could make brain surgeries more targeted. It might also expand the scope of neurosurgery.

“The definition of what is an inoperable tumor is in some circumstances related to what is the surgeon reasonably comfortable with removing that isn’t going to ruin the patients life,” Bijanki says. “If the surgeon could know that in real time, then the surgery could proceed a little bit differently.”

More broadly, it could also find use as a treatment for mental disorders like depression, anxiety and PTSD. Bijanki imagines electrodes powered by a pacemaker battery delivering continuous, low-grade stimulation to patients with depressive disorders.

In the future, we may not even need wires to spark such emotions. Scientists are developing means of activating brain regions with pulses of light, or with ultrasound. Flashes and vibrations could one day deliver ease to the afflicted.

There are drugs that accomplish similar things today, of course, but those often have side effects, and the treatment isn’t always as direct. Brain stimulation could offer a better path.

Banish the Sadness

Bijanki was also struck by an odd side-effect of the stimulation. Though patients had no trouble recalling sad memories during treatment, the recollections were wholly powerless to make them feel unhappy.

“I remember my dog dying, and I remember that it was a sad memory, but I don’t feel sad about it right now,” the young woman said, as reported by the researchers in their paper. Another patient concurred, unable to recollect a tragic memory without smiling. The effect is slightly jarring, but it could provide a shield of sorts to those overcoming trauma.

Those suffering from PTSD often go through what’s called exposure therapy, where they are asked to repeatedly sift through memories of a traumatic event. The goal is to drain those memories of their fearsome power over time, but it is difficult, frightening work.

Paired with temporary brain stimulation that elides sadness, Bijanki thinks PTSD patients might be far better equipped to tread through painful memories.

Finding Balance

Ultimately, however, the goal of therapies involving brain stimulation isn’t to wipe out negative emotions.

Anger, sadness and fear are not without their merits, and banishing them could have unintended consequences. Sadness sits at the other end of the spectrum from happiness, for example. Taking away any of our emotions would be removing an aspect of our humanity. What’s more, we have emotions for a reason.

“Our emotions exist for a very specific purpose, to help us understand our world, and they’ve evolved to help us have a cognitive shortcut for what’s good for us and what’s bad for us,” Bijanki says.

That’s not the goal here, of course, though discussions about the ethical use of such technologies in the future is certainly warranted. Bijanki says that we’d need to be careful about applying things like brain stimulation that could be abused.

But, she’s not very worried about electrodes and electric shocks becoming the next designer drug. It’s just too technically demanding, she says. And the potential benefits for those with depression and other conditions are great.

Sometimes the bad can outweigh the good. In those cases, sparking a little joy might be what we need.

[ad_2]

Source link

قالب وردپرس

Continue Reading

Ecology

NASA Picks Science Experiments to Send to the Moon This Year

Editor

Published

on

By

[ad_1]







[ad_2]

Source link

قالب وردپرس

Continue Reading

Ecology

Virgin Galactic’s SpaceShipTwo Just Made its Second Trip to Space

Editor

Published

on

By

[ad_1]

SpaceShipTwo under rocket power

SpaceShipTwo is carried into the air on the back of a plane, but then takes off into space under its own power. (Credit: Virgin Galactic)

On Friday, Virgin Galactic’s SpaceShipTwo flew in space for the second time, taking off from Mojave, California after days of weather delay. SpaceShipTwo took off at 8:07 a.m. PST carrying two pilots, a crewmember, and a nearly full weight of science projects from NASA.

Unlike most spaceflights that fire rockets from the ground, SpaceShipTwo is carried on the belly of a plane named WhiteKnightTwo before being released to propel itself into the upper atmosphere. After being carried 45,000 feet into the air, SpaceShipTwo successfully fired its rocket engine and reached suborbital space at approximately 8:55 a.m. PST. It coasted there for only a few minutes before heading back toward the ground, where it landed much like any other plane, roughly an hour after takeoff. Like all of SpaceShipTwo’s planned flights, this one was suborbital, meaning it does not reach orbit, and attains weightlessness for only a few minutes during its trip.

SpaceShipTwo made its maiden space voyage in December 2018, and today was its fifth powered flight in total. Unlike other private spaceflight companies like SpaceX, Virgin Galactic has made their main goal ferrying private citizens into space, and have been taking reservations for years.

The third crewmember today was Virgin Galactic’s Chief Astronaut Instructor and cabin evaluation lead. Her job today was to see how SpaceShipTwo feels from the cabin. Eventually, Virgin Galactic hopes to seat six passengers in place of the science payloads – or alongside them.

The spacecraft today also carried research projects from NASA’s Flight Opportunities program, which pairs research institutions with private companies who can fly their projects into space. The combined weight of the payloads put SpaceShipTwo at close to, but just under, the requirements for the commercial launch weight that NASA has specified. One of Virgin Galactic’s goals during this flight was testing how the vehicle flies with a greater weight distribution. Details will likely come later, but the flight was successful, which bodes well for the craft’s future in ferrying cargo as well as passengers.

[ad_2]

Source link

قالب وردپرس

Continue Reading

Chat

Trending